How Obama and McCain voted on environmental issues in 2007

How did Barack Obama and John McCain vote on environmental and clean energy issues in 2007?

By Glenn Maltais

According to the League of Conservation Voters (LCV), Obama did OK, McCain, not so much.

Even though both presidential candidates are rigorously touting their environmental credentials, when it comes to walking the talk, the difference between Barack Obama and John McCain appears to be significant.

The national environmental scorecard, a ranking system that evaluates individual U.S. legislators based on their votes on environmental issues, highlighted 15 key votes last year–all of which senator McCain missed, resulting in a 0% score.

It is not uncommon for Presidential candidates to suffer from absenteeism during hectic election campaigns, or to miss roll call votes while being away from Washington for prolonged periods. Nevertheless, Obama managed to only miss four environmental votes, resulting in a 67% score – not great – but a whole lot better than 0%.

As scored by the LCV, McCain’s lifetime average is 24%, well below Obama’s 86%. Granted, this is not the greatest of comparisons, considering McCain has been in the Senate for a few decades, and Obama, a few years…but still, 24%? Not cool.

Out of the 15 votes where McCain chose to be elsewhere, the one that upset environmental groups the most occurred when an important piece of legislation fell one “yes” vote short of passage. The legislation involved tax incentives for renewable energy (set to expire December 31st, 2008) and repealed unnecessary tax breaks for the oil and gas industries.

Unfortunately, when it comes to what is arguably two the most important issues of our time, energy and the environment, McCain’s “straight talk express” may sound like it’s headed for greener pastures, but it appears to be circling the current administration’s big oil wagons. And, that leaves many environmentalists and those striving to usher in a new [clean, domestic] energy era, seeing red.

Advertisements

Betting on a hot market for syngas

Turning scrap metal and debris into energy may help U.S. ease its reliance on oil

By Robert Gavin Globe Staff / August 25, 2008

NEW BEDFORD – Take a rusting, hulking pile of scrap metal, add a few tons of construction debris, and what do you get?

In the case of Ze-gen Inc., a new source of energy.

Ze-gen, founded four years ago, is using the unappetizing conglomeration to make fuel for power plants.

Borrowing technology from the steel industry, the company turns scrap metal into a 2,800-degree metal bath and injects construction debris deep into the bubbling cauldron. The process produces a clean-burning , or syngas, that can replace natural gas or fuel oil.

Ze-gen has been proving its technology and the quality of syngas over the past year, operating a demonstration plant here that digests about a ton of debris an hour. The company is now considering several sites, primarily in the Northeast, to develop a commercial facility that could eventually process as much as 30 tons an hour and produce enough gas to fuel a plant that could power 20,000 homes.

It expects to begin commercial production at the end of next year.

“We’re solving two problems,” said Bill Davis, Ze-gen’s chief executive. “We’re eliminating wastes that would end up in a landfill and reducing fossil fuels.”

Ze-gen is one of many companies across the nation using gasification technologies to convert plant, wood, and other organic wastes – known as biomass – into syngas. Some like, Ze-gen, are simply making syngas, which has the same chemical components, carbon and hydrogen, as fossil fuels. Others, like the Massachusetts Institute of Technology spinoff InEnTec LLC, of Bend, Ore., are condensing it into liquid to make ethanol.

InEnTec uses municipal solid waste as feed stock and a technology known as plasma gasification, initially developed at MIT several years ago to destroy hazardous materials. The technology essentially creates an artificial bolt of lightning that vaporizes materials. InEnTec applied the method to solid waste, producing a syngas, then introducing a catalyst to change the gas into liquid, which can be blended with gasoline.

InEnTec and a partner, Fulcrum BioEnergy Inc. of California, recently said they plan to break ground on a $120 million plant near Reno, Nev., by the end of the year, and begin commercial production of ethanol in 2010. The plant will process 90,000 tons of waste annually to produce 10.5 million gallons of ethanol. Including tipping fees (the charge for taking the waste), the company projects making ethanol for about $1 a gallon, said Dan Cohn, a cofounder of InEnTec and senior research scientist at MIT.

“Gasification has a lot of potential because the technology is well established and can process a very wide range of feed stocks,” Cohn said. “It has the greatest potential when you can process waste.”

Gasification, which uses heat to turn solids into gas, is indeed a well-established technology. Before the invention of the electric light, many cities and towns had plants that converted coal to gas for street lamps. With oil and natural gas prices soaring, coal gasification has gained new interest, but is controversial because coal gas produces high amounts of carbon dioxide, a greenhouse emission that contributes to global warming.

Using biomass as a feed stock is considered more environmentally friendly because plants and trees can be regrown to absorb carbon dioxide created by burning syngas. In addition, keeping waste out of landfills reduces an even more potent greenhouse gas, methane, which is released during decomposition.

Reducing solid waste was a key consideration in the founding of Ze-gen. Davis said more than 300 million tons of waste end up in US landfills every year, about 15 percent of it wood waste from construction. Ze-gen’s idea: Tap the waste’s energy potential.

The company’s engineers determined that channel induction furnaces used in the steel industry provided an energy-efficient way to turn construction debris into a high-quality, clean syngas. The electricity used for the furnace offsets about 15 percent of the energy produced by the syngas, Davis said.

The construction debris is first ground up, then injected deep into the molten metal with ceramic cylinders, much like dipping forks into a fondue pot. The intense heat converts the debris to gas. Heavy metals, such as lead from paint, settle to the bottom of the bath while other contaminants are trapped in crust of silica, known as slag, that forms on top.

Ze-gen raised about $8 million from investors to build the demonstration plant at a New Bedford waste-transfer station. The next step is to find industrial partners to put the gas to work. Syngas is difficult and expensive to transport, so Ze-gen’s plan is to build production facilities near users such as power and cogeneration plants at large factories. Cogeneration produces steam as well as electricity.

Several large companies have expressed interest, Davis said. He estimates the company could make syngas for about 75 percent of the current price of natural gas on commodities markets, and less than half that of fuel oil. Tipping fees for taking the waste could further lower the cost, he said.

As Biomass Power Rises, a Wood-Fired Plant Is Planned in Texas

The city of Austin, Tex., approved plans on Thursday for a huge plant that will burn waste wood to make electricity, the latest sign of rising interest in a long-dormant form of renewable energy.

When completed in 2012, the East Texas plant will be able to generate 100 megawatts of electricity, enough to power 75,000 homes. That is small by the standards of coal-fired power plants, but plants fueled by wood chips, straw and the like — organic materials collectively known as biomass — have rarely achieved such scale.

Austin Energy, a city-owned utility, has struck a $2.3 billion, 20-year deal to be the sole purchaser of electricity from Nacogdoches Power, the company that will build the plant for an undisclosed sum. On Thursday, Austin’s City Council unanimously approved the deal, which would bring the Austin utility closer to its goal of getting 30 percent of its power from renewable sources by 2020.

“We saw this plant as very important because it gives us a diversity of fuels,” said Roger Duncan, general manager of Austin Energy. “Unlike solar and wind, we can run this plant night or day, summer or winter.”

More than 100 biomass power plants are connected to the electrical grid in the United States, according to Bill Carlson, former chairman of USA Biomass, an industry group. Most are in California or the Northeast, but some of the new ones are under development in the South, a region with a large wood pulp industry.

The last big wave of investment in the biomass industry came during the 1980s and early 1990s. Interest is rising again as states push to include more renewable power in their mix of electricity generation.

Last week, Georgia Power asked state regulators to approve the conversion of a coal plant into a 96-megawatt biomass plant. An additional 50-megawatt plant in East Texas is expected to be under construction by September.

Mike Whiting, chief executive of Decker Energy International, a developer and owner of four biomass plants around the country, estimates 15 to 20 new biomass plants are proposed in the Southeast, though not all will be built. The region is, he said, “the best part of the U.S. for growing trees.”

In California, which has the most biomass plants in the country, momentum is reviving after years of decline. The number of biomass plants has dropped to fewer than 30, from 48 in the early 1990s, because of the closing of many sawmills and the energy crisis early this decade, said Phil Reese of the California Biomass Energy Alliance. Six to eight of the mothballed plants are gearing up to restart, Mr. Reese said, helping California meet its renewable energy goals.

At least three biomass plants have been proposed in Connecticut, and another three in Massachusetts — though last week one of these, a $200 million, 50-megawatt biomass plant proposed for the western part of the state, experienced a regulatory setback because of concerns about truck traffic.

Some environmental groups have opposed the Nacogdoches plant. Cyrus Reed, conservation director of the Sierra Club’s Lone Star chapter, said the plant was not “as clean as it could be” in terms of emissions. He also criticized the lack of a competitive bidding process to build the plant.

Pulp and paper companies operating in wooded East Texas have also opposed the plant, which will require a giant amount of wood residue — one million tons each year. They are concerned that there is not enough wood for their industry and the plant. But Tony Callendrello, vice president of Nacogdoches Power, said the company would use only discarded forest residues, mill waste and the like.

“We have no need — and no intention — to go after anything that the forest-products companies would be using in their production,” he said.

Green Ambassadors New World Leaders in Training

Green Ambassadors New World Leaders in Training

Author: Bobbi Miller-Moro

Visiting the Green Ambassadors new facilities in Lawndale, California I noticed right away this program is driving Environmental Charter High School to be like no other. Maybe it was the compost corner and vegetable garden, or where they convert vegetables into biodiesel. Or the First Place award-winning ‘Floatation Machine’ made out 100% recycled products. Either way, this school is unique. I am at the home of The Green Ambassadors (Green Ambassadors website), which is an educational program from the Environmental Charter High School.

Sara Laimon, the magnetic Founder of Green Ambassadors gave me a tour of their new facilities of ECHS and Green Ambassadors, while still in the remodeling and upgrading phase. As the school is moving out of boxes, and organizing their new classrooms she explained the sustainable plans in store for this unique Environmental Charter High School. There is an air of excitement. As I peaked into the classrooms, students were busy with various projects. These students know they are making a difference in our world for generations to come. The Green Ambassador Program is comprised of an elective class taught throughout schools in Los Angeles area, Youth Summits, Green Mobile Embassy, Green Adventures and supported by Green Mentors.

Photobucket

This groundbreaking organization is beginning to explode. The green element of the program is so strong that even during our interview she was selling organic soda to students from her office. In fact we were surrounded by green solutions, hangers made from wheat, recycled binders made from paper, Forest Certified pencils, even donated environmentally friendly, bio-degradable diapers are stacked on her desk in the office she shares with her green partners. “This program is created to breakdown our cultural social paradigms and educate all. Especially the communities that suffer the most from environmental injustices, the inner city, who normally miss the green education on how to advocate for a clean, healthy environment.” Laimon.

Green Ambassadors, a project of Environmental Charter High School, is an environmental education program that empowers youth to become agents of change in their communities and the world. The goals of the program include: Educating and motivating youth, inspiring them to set a “Green” example through open idea exchange and social action; To create a learning environment that will inspire new thought, helping young people to develop confidence in themselves and their future; To network communities, share ideas and empower local and global environmental solutions; To create “Green Ambassadors” for local communities and the world, inspiring hope within us all for a just, sustainable and peaceful planet.

I asked Sara what’s the future you see for the Green Ambassadors?

With certainty she said, “For all schools to have Green Ambassadors around the world. Who are agents of change and the voice of the environment.”

The Green Ambassador elective class at Environmental Charter High School is a required course for every student to take in their 10th grade year where students receive college credit from Los Angeles Trade Technical College. The Green Ambassadors have already been accomplishing their mission through their trainings in initiatives. These initiatives are implemented by youth who are committed to fulfilling Green Ambassadors mission, vision, values, and goals. The Green Ambassador program provides a different way of learning for youth who want to contribute to this planet.

They have been trained in the One Billion Bulbs Youth empowering youth to imagine the possibilities. With a goal of mobilizing the world to replace one billion standard incandescent light bulbs with energy-efficient compact fluorescent (CFL) light bulbs. Plastics are Forever is another initiative where youth empowering youth to create cleaner oceans by banning plastic bags and Styrofoam (polystyrene) in Los Angeles with Algalita Marine Research Foundation, Bring Your Own, Heal the Bay and other non-profits. Green Ambassadors are trained in Biofuels, Organics, Biodiversity, Remediation of our soil, and constructing buildings and structures out of earth friendly materials.

floatation machine

‘Floatation Machine’ made of all recycled products

“Sara Laimon has been a positive light within the sustainability movement for the past ten years. During her career as a classroom teacher, she has guided classes and school groups to create cob benches, convert a diesel car to run on veggie oil, create bio-diesel, and eat organic. Sara has traveled to Brazil, Colombia, Argentina, Haiti, Greece, and Galapagos finding, sharing, and learning solutions. She is devoting her life to creating and nurturing eco-activists to be empowered to share the solutions of hope.”

Green Ambassadors currently has two teachers. They are unique in that they are well versed in Environmental Studies. “They approached me with a huge desire for a huge change.” Sara shared with me. The names of these incredible teachers are Sandra Valencia who is originally from Colombia, she has taught High School Spanish for the past five years at ECHS and Dorsey High School (LAUSD). She has been an environmental activist for the past five years working with the Los Angeles Biodiesel Coalition, Dorsey High School’s club Global Warriors. Gabriel Azenna, who’s statement is “Green’ isn’t merely a color… but it’s a state of mind”. He adheres to a pragmatic acceptance that human beings may continue to prosper, but only by recognizing and embracing our integral duty as planetary stewards. Beyond the classroom, Gabriel is the Environmental Education Director for Next Aid, a non-profit organization his wife Lauren, co-founded in 2002. Gabriel also sits on the steering committee for the Coalition for a Sustainable Africa; a consensus-based network of NGO’s all dedicated to sustainable development projects on the ground in Africa.
Sara believes that the passion behind the people that contribute to our program stems from a satisfaction that they are investing into youth, that they see what they are doing is bigger than themselves and they contributing to the environment at the same time.

I was also interested in the ethnic backgrounds of The Green Ambassadors.

She explained they started with inner city children, but understand and promote that there is one world and we are the human race working together to create a planet where everyone can live. Therefore we have ‘Youth Summit’ where youth crossing gender, race, and social barriers and are collaborating as youth across the city and nation to inspire, create, and share solutions for a healthy planet.”

“We are tired of the myths about inner-city kids and their apathy towards the environment!” What is unique about our Los Angeles Youth Leadership Clinic is that it is youth-planned, youth- driven and youth-motivated. Youth are driven to improve their local environment.”

Spelled out clearly on their website; “Young adults are creating their own stewardship model by teaching each other, pooling their resources, strengthening their community vision and inspiring people to change. Youth need to see that they are an influential and vital part of the community. The youth of Los Angeles are the next generation of leaders. If they are not included in the community when they are young, they may not stay in the community to be the leaders of the future. These thoughts were recently expressed by Sabina Ibarra, a youth participant in the leadership clinic, Green Ambassadors, and a student at Environmental Charter High School in Lawndale, CA.”

In asking how Green Ambassadors improved their your local community? Sara reflects how they have demonstrated training for bio-diesel technology, community battery recycling, training local elementary schools on how to recycle plastics, to be a first in promoting city council ‘ban plastic in our community’, Awareness Day, and Earth Day to name just a few. They also are responsible for Southern California Disposal to switch their fleets of dirty diesel to run on clean burning biodiesel.

“Our strategy through all of our programs is to provide experiences for the Green Ambassadors to acquire knowledge and develop the skills that will not only help them in this program, but also provide them with real-world skills for personal, academic, and professional success. The students take the issue, research and develop solutions, and socially market the solution to their peers and the community at-large.”

The Future

They have not stopped there. Green Adventures are cross cultural global exchanges. After a successful field experience to Brazil in April 2007 with Earthwatch Education, and educating the schools there, they have taken on a new horizon: Columbia. They are currently holding a fundraiser, ‘Support 10 students with the Green Adventure Program’ as they create Green Ambassador Leaders in Medellin, Columbia. Medellin has created several programs that aim to bring peace and environmental action through education. To find out more contact Sandra Valencia sandra_valencia@echonline.org or Sara Laimon at 310.214.3400 ext 118. Visit

(http://www.greenambassadors.org/initiatives.php#Green_Mentors)

They believe that ‘ youth identify an issue, develop a solution, act to bring about the solution, and educate others. The most important part is that young people are becoming empowered to make a difference and are, in turn, empowering other young people. This leads to a community that has youth that are knowledge, active, and know how to make a difference.’
Sara Laimon explained what their Mobile Embassy will incorporate. It will feature a multi-media station and hands-on learning stations on the following topics; plastics, bio-diesel, bio-plastic, solar power, and organic foods. It will be used as the showcase for Green Ambassador to meet, share, and exemplify solutions for our Global Climate Crisis.

With expert assistance from Algalita Marine Research Foundation, Bring Your Own, and a grant from Patagonia, the Ambassadors will transform a trailer into a Green Mobile Embassy (GME), a vessel housing models of green solutions. The Mobile Embassy will serve to teach students from throughout the region about the issues and how they can help to alleviate the environmental problems.” As their site reflects. Jack Assadourian, owner of the Ha-Ha Cafe Comedy Club in North Hollywood (www.hahacafe.com) also donated two school buses that will be converted into biodiesel transportation for the Green Ambassadors.

Photobucket

Green Mentors

“The Green Ambassadors program also identifies and enlists ‘Green Mentors’ who are of college age or above. These Mentors work with the Green Ambassadors to support them in their learning of environmental issues as well as solutions to these issues. Green mentors are benefited by developing their interpersonal skills (empowerment, networking, and enrollment), knowledge (environmental and scientific), and ecological values (biodiversity and interconnectedness). Green Mentors assist the Green Ambassadors to focus on specific issues where students can create social awareness and measurable change.”
If you are a teacher, administrator, parent or student, and want to be apart of Green Ambassadors go to: http://www.greenambassadors.org. You can contact Sandra Valencia (sandra_valencia@echonline.org) or Sarah Laimon at 310.214.3400 ext 118. Green Ambassadors 16314 Grevillea Ave, Lawndale, CA 902160 PHONE: 310.940.1626

There are several ways you can participate and make a difference in your school, community and planet. You can also go to the ‘Green Coalition’, a

“Green Youth Coalition connects environmental clubs across Southern California via http://www.becoolbegree.com to create a youth movement.”

Green Ambassadors uses the EARTH CHARTER PRINCIPLES

(www.earthcharterinaction.org)

You can learn more about Green Ambassadors and their Mission Statement: http://www.greenambassadors.org

They have communities and businesses reaching out to be apart of this unique program. ExitSigns.com environmentally friendly exit signs are a zero energy emissions, zero maintenance, and is zero damage to the environment. Fundraising Green, The Coffee Bean, California Credit Union, 41Pounds.org, Fred Leeds Properties, Smokey’s Muskie Shop, Marc Laimon Jiu Jitsu, Steaz, Peak Organic brewing company, the Sustainable Group, Southern California Disposal, Seven-Star green event experts, Get Hip Get Green, Cuningham Group, Cater Green zero waste solutions, Biodiesel America, Luis Moro Productions and Algalita Marine Research Foundation are a few of the sponsors that have jumped on board. The Official Fundraising Partner of Green Ambassadors are; My Green Spark, Fundraising Green.

The Green Ambassadors left me with an experience of what is right with the world. No matter what your opinions are on the environment, the fact remains they are cutting back on waste. These students, instead of worrying about the plights of inner city school problems, such as gang violence; they are creating an environment for themselves today, for their future that will effect generations to come. Not only are they making a difference for their school, families, and communities, but they are spreading the technology on HOW to be green to schools across the city, states, and now countries.

I left the school inspired, and honored that these incredible teenagers are working on change for my future, and my children’s future.

Let’s start off 2008 powerfully, and create “Green Ambassadors” for all communities inspiring hope for a just, sustainable and peaceful planet.

Article Source: http://www.articlesbase.com/causes-and-organizations-articles/green-ambassadors-new-world-leaders-in-training-351482.html

About the Author:

Bobbi Miller-Moro writes on family issues and the environment. She is a filmmaker, artist, and mother of five. Raising her children with her husband in Los Angeles. You can learn more about her at her personal blog store at ThankGodForMommy.com and www.powerfulmothers.wordpress.com

Farmer turns to fruit tree to power tractors

By Rich PhillipsThe jatropha tree contains golf-ball-sized fruit that can be made into biodiesel.
CNN

LABELLE, Florida (CNN) — Bryan Beer, a citrus grower in southwestern Florida, sees himself as a bit of a pioneer. He’s not digging for gold. It’s more like he’s planting for oil.

The jatropha tree contains golf-ball-sized fruit that can be made into biodiesel.

He is planting a jatropha tree, a plant that can produce diesel fuel and could one day power a 747. His plans are a little less ambitious; he just wants to plant enough to run his tractors.

“Any kind of relief or help we can get from a cheaper source of oil could impact the agricultural industry tremendously throughout the country, throughout the world,” said Beer, whose family has been growing citrus for decades.

Jatropha means “doctor food.” It originated in South America, where it was once used for medicinal purposes. There are three seeds within the golf-ball-sized fruit. When pressed, its oil can be used as fuel in any standard diesel engine with zero processing, experts say.

Sound like a pipe dream? It’s not.

It’s being taken very seriously by companies all over the world, including the Chrysler motor company and Air New Zealand. The airline is planning a test flight in November in Auckland in which jatropha biodiesel will be mixed with diesel fuel.

This is what has farmers, scientists and engineers excited.

“It is a superior oil,” said Roy Beckford, an agricultural scientist with the University of Florida.

Air New Zealand says the quality and quantity of the product may be so good that the airline could run the test flight without having to mix the jatropha biofuel with any normal aviation fuel.

Beckford said countries like China, India and Brazil have planted millions of acres of jatropha, but the United States has yet to make that sort of investment.

“We are way, way behind these people,” he said. “But certainly we have the ability, and we have shown that over and over again that we can beat people on technology and applying that technology.”

Beckford has been experimenting to see how the tree grows best. He says jatropha can be grown in soil that is not suitable for most food crops.

“Even under harsh drought conditions with minimal amount of water or moisture, it will survive,” he said.

Jatropha is being tested in nurseries and farms, primarily in Florida and Hawaii, to see if it can be used as a viable alternative biofuel nationwide. Caribbean nations have used jatropha for years as biofuel and a home-made medicine to treat constipation and inflammation, Beckford said.

He says jatropha would probably never be the main biodiesel crop but should be added into the mix of biodiesel crops. “It think it’s going to be part of the equation.”

Beckford’s research is done on a small patch of land in Fort Myers, Florida, where 176 seedlings were planted last year. Some are fertilized; some are not. Some are exposed to insects, and some plants are scattered around the foundation of an old home.

Beckford showed how the jatropha plant thrived right in the middle of the foundation, within the dirt and rocks.

He and his researchers believe that U.S. technology will aid in the growth of the trees. Currently, each tree yields only about two gallons of oil a year.

“In the next four or five years, I think we’ll increase not only the fruits per jatropha tree, but we’ll also increase the amount of oil in each of those seeds,” Beckford said.

Right now, biodiesel is a growing industry but hasn’t made an appreciable dent on the global dependence on heavy crude oil, from which diesel fuel is processed.

The National Biodiesel Board says that less than 1 percent of the 60 billion gallons of diesel fuel used each year comes from biodiesel, most of it produced from soybeans, animal fats and recycled oil. But, the board says, the 20 million gallons of diesel fuel saved from these alternative fuels was the equivalent of eliminating the emissions from 700,000 cars.

Some consumer groups say it’s unrealistic to think that biofuel will replace oil totally. Experts also say the potential savings here may be offset by higher prices somewhere else as farmers use their more crop land to experiment with alternative fuel crops.

“There are implications to dedicating more and more crop land to fuel production rather than food production,” said Tyson Clocum of the consumer watchdog group Public Citizen. “That comes in the form of tighter supplies for food production, and that leads to higher prices.”

Beer says he’s not looking to abandon his family’s citrus business. LaBelle Grove Management has been around for more than 40 years. He’s currently farming 30 acres of jatropha, compared to 2,500 acres of citrus.

Beer is trying to figure out how he’s going to afford to put diesel in his heavy equipment. He has four tractors that each run on 120 gallons a day.

“We have to have these machines running. If we don’t have these machines running and we don’t have diesel fuel, we don’t produce our crops,” he said.

So, for now, Beer is taking a stab at growing his own fuel. Jatropha won’t be a replacement crop for him, but it may help him fill up his tractor.

“To be a better America, we are going to have to have a secondary source besides oil,” he said.

WORLD GEOTHERMAL POWER GENERATION NEARING ERUPTION

Earth Policy Institute
Plan B Update
For Immediate Release
August 19, 2008

Jonathan G. Dorn

With fossil fuel prices escalating and countries searching for ways to reduce oil dependence and greenhouse gas emissions, capturing the earth’s heat for power generation is garnering new attention. First begun in Larderello, Italy, in 1904, electricity generation using geothermal energy is now taking place in 24 countries, 5 of which use it to produce 15 percent or more of their total electricity. In the first half of 2008, total world installed geothermal power capacity passed 10,000 megawatts and now produces enough electricity to meet the needs of 60 million people, roughly the population of the United Kingdom. In 2010, capacity could increase to 13,500 megawatts across 46 countries–equivalent to 27 coal-fired power plants.

Originating from the earth’s core and from the decay of naturally occurring isotopes such as those of uranium, thorium, and potassium, the heat energy in the uppermost six miles of the planet’s crust is vast–50,000 times greater than the energy content of all oil and natural gas resources. Chile, Peru, Mexico, the United States, Canada, Russia, China, Japan, the Philippines, Indonesia, and other countries along the Ring of Fire (an area of high volcanic activity encircling the basin of the Pacific Ocean) are rich in geothermal energy. Another geothermal hot spot is the Great Rift Valley of Africa, which includes such countries as Kenya and Ethiopia. Worldwide, 39 countries with a cumulative population of over 750 million people have geothermal resources sufficient to meet all their electricity needs. (See data at http://www.earthpolicy.org/Updates/2008/Update74_data.htm.)

Typically, power generation using the earth’s heat required underground pockets of high-temperature water or steam to drive a steam turbine. Now, new technologies that use liquids with low boiling points in closed-loop heat exchange systems allow electricity to be generated at much lower temperatures. This breakthrough is making geothermal power generation viable in countries such as Germany that are not known for their geothermal resources and is one reason why the number of countries using the earth’s heat to generate electricity could almost double by 2010.

One advantage of geothermal power plants, beyond the benefit of producing electricity from a low-carbon, indigenous energy source with no fuel costs, is that they provide baseload power 24 hours a day. Storage or backup-power is not required.

The United States leads the world in generating electricity from the earth’s heat. As of August 2008, geothermal capacity in the United States totaled nearly 2,960 megawatts across seven states–Alaska, California, Hawaii, Idaho, Nevada, New Mexico, and Utah. California, with 2,555 megawatts of installed capacity–more than any country in the world–produces almost 5 percent of its electricity from geothermal energy. Most of this capacity is installed in an area called the Geysers, a geologically active region north of San Francisco.

Thanks to the Energy Policy Act of 2005, which made geothermal power generation eligible to receive the federal renewable energy production tax credit, electricity generated from geothermal resources now costs the same as fossil-fuel-based electricity in many markets in the western United States. With favorable economics, the geothermal industry is experiencing a surge in activity. As of August 2008, some 97 confirmed new geothermal power projects with up to 4,000 megawatts of capacity were under development in 13 states, with some 550 megawatts of this already in the construction phase. Expected to create 7,000 permanent full-time jobs, the new capacity will include numerous large-scale projects such as the 350-megawatt and 245-megawatt projects by Vulcan Power near Salt Wells and Aurora, Nevada; the 155-megawatt project by CalEnergy near the Salton Sea in southern California; and the 120-megawatt project by Davenport Power near the Newberry Volcano in Oregon.

Current development is only scratching the surface of what is possible. The U.S. Department of Energy estimates that with emerging low-temperature technologies, at least 260,000 megawatts of U.S. geothermal resources could be developed. A study led by the Massachusetts Institute of Technology indicates that an investment of roughly $1 billion in geothermal research and development over 15 years (roughly the cost of a single new coal-fired power plant) could lead to commercial deployment of 100,000 megawatts by 2050.

In Europe, the top countries in geothermal energy development are Italy with 810 megawatts and Iceland with 420 megawatts. Italy is expected to nearly double its installed capacity by 2020. Iceland, with 27 percent of its electricity needs met by harnessing the earth’s heat, is number one in the world in the share of its electricity generated from geothermal energy. Germany, with only 8 megawatts of installed capacity, lags behind but is beginning to see the effects of a feed-in tariff of €0.15 (US $0.23) per kilowatt-hour that was implemented in 2004. Almost 150 plants are now in the pipeline in Germany, with most of the activity centered in Bavaria.

Ten of the top 15 countries producing geothermal electricity are in the developing world. The Philippines, which generates 23 percent of its electricity from geothermal energy, is the world’s second biggest producer behind the United States. The Philippines aims to increase its installed geothermal capacity by 2013 by more than 60 percent, to 3,130 megawatts. Indonesia, the world’s third largest producer, has even bigger plans, calling for 6,870 megawatts of new geothermal capacity to be developed over the next 10 years–equal to nearly 30 percent of its current electricity generating capacity from all sources. Pertamina, the Indonesian state petroleum company, anticipates building most of this new capacity–adding its name to the list of conventional energy companies that are beginning to diversify into the renewable energy market.

The geothermal development potential of the Great Rift Valley in Africa is enormous. Kenya is the frontrunner in the effort to tap this potential. In late June 2008, President Mwai Kibaki announced a plan to install some 1,700 megawatts of new geothermal capacity within 10 years–13 times greater than the current capacity and one-and-a-half times greater than the country’s total electricity generating capacity from all sources. Djibouti, aided by Reykjavik Energy Invest’s commitment to provide $150 million for geothermal energy projects in Africa, aims to tap the earth’s heat to produce nearly all of its electricity within the next few years. Further stimulating development is the African Rift Geothermal Development Facility (ARGeo), an international organization partly funded by the World Bank that seeks to increase the use of geothermal energy in the Great Rift Valley by protecting investors from losses during early stages of development.

Industry, which accounts for more than 30 percent of world energy consumption, is also starting to turn to reliable, low-cost geothermal energy. In Papua New Guinea, a 56-megawatt geothermal power station owned by Lihir Gold Limited, a leading global gold company, meets 75 percent of corporate power demand at a notably lower cost than oil-fired power generation. In Iceland, five geothermal power plants planned near Reykjavik, which are slated to have a total capacity of 225 megawatts when completed in 2012, will provide electricity to new aluminum refineries.

Despite development potential measured in the hundreds of thousands of megawatts, tapping this renewable source of power is still in its infancy. But as more and more national leaders begin to see renewable energy as a cost-effective, low-carbon alternative to price-volatile, carbon-intensive fossil fuels, geothermal power generation is expected to move rapidly from marginal to mainstream.

# # #

For more information on Earth Policy Institute’s goal of 200,000 MW of CSP worldwide, part of a plan to cut carbon emissions 80 percent by 2020, see Chapters 11-13 in Plan B 3.0: Mobilizing to Save Civilization, available at http://www.earthpolicy.org for free downloading.

A Look Back on the Future of Energy Resources

Today as yesterday, when it comes to energy, we flick a switch, adjust the thermostat, turn the car key and anticipate the result without thought to cause, effect, past or future. It is only in the absence of the energy that enables our way of life that it enters our consciousness – a level of thinking that cannot wait until tomorrow…

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Energy Resources and Our Future

FOR RELEASE: TUESDAY, MAY 14, 1957

Remarks Prepared by:
Rear Admiral Hyman G. Rickover, U.S. Navy

Chief, Naval Reactors Branch
Division of Reactor Development
U.S. Atomic Energy Commission
and Assistant Chief of the Bureau of Ships for Nuclear Propulsion

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I am honored to be here tonight, though it is no easy thing, I assure you, for a layman to face up to an audience of physicians. A single one of you, sitting behind his desk, can be quite formidable.

My speech has no medical connotations. This may be a relief to you after the solid professional fare you have been absorbing. I should like to discuss a matter which will, I hope, be of interest to you as responsible citizens: the significance of energy resources in the shaping of our future.

We live in what historians may some day call the Fossil Fuel Age. Today coal, oil, and natural gas supply 93% of the world’s energy; water power accounts for only 1%; and the labor of men and domestic animals the remaining 6%. This is a startling reversal of corresponding figures for 1850 – only a century ago. Then fossil fuels supplied 5% of the world’s energy, and men and animals 94%. Five sixths of all the coal, oil, and gas consumed since the beginning of the Fossil Fuel Age has been burned up in the last 55 years.

These fuels have been known to man for more than 3,000 years. In parts of China, coal was used for domestic heating and cooking, and natural gas for lighting as early as 1000 B.C. The Babylonians burned asphalt a thousand years earlier. But these early uses were sporadic and of no economic significance. Fossil fuels did not become a major source of energy until machines running on coal, gas, or oil were invented. Wood, for example, was the most important fuel until 1880 when it was replaced by coal; coal, in turn, has only recently been surpassed by oil in this country.

Once in full swing, fossil fuel consumption has accelerated at phenomenal rates. All the fossil fuels used before 1900 would not last five years at today’s rates of consumption.

Nowhere are these rates higher and growing faster than in the United States. Our country, with only 6% of the world’s population, uses one third of the world’s total energy input; this proportion would be even greater except that we use energy more efficiently than other countries. Each American has at his disposal, each year, energy equivalent to that obtainable from eight tons of coal. This is six times the world’s per capita energy consumption. Though not quite so spectacular, corresponding figures for other highly industrialized countries also show above average consumption figures. The United Kingdom, for example, uses more than three times as much energy as the world average.

With high energy consumption goes a high standard of living. Thus the enormous fossil energy which we in this country control feeds machines which make each of us master of an army of mechanical slaves. Man’s muscle power is rated at 35 watts continuously, or one-twentieth horsepower. Machines therefore furnish every American industrial worker with energy equivalent to that of 244 men, while at least 2,000 men push his automobile along the road, and his family is supplied with 33 faithful household helpers. Each locomotive engineer controls energy equivalent to that of 100,000 men; each jet pilot of 700,000 men. Truly, the humblest American enjoys the services of more slaves than were once owned by the richest nobles, and lives better than most ancient kings. In retrospect, and despite wars, revolutions, and disasters, the hundred years just gone by may well seem like a Golden Age.

Whether this Golden Age will continue depends entirely upon our ability to keep energy supplies in balance with the needs of our growing population. Before I go into this question, let me review briefly the role of energy resources in the rise and fall of civilizations.

Possession of surplus energy is, of course, a requisite for any kind of civilization, for if man possesses merely the energy of his own muscles, he must expend all his strength – mental and physical – to obtain the bare necessities of life.

Surplus energy provides the material foundation for civilized living – a comfortable and tasteful home instead of a bare shelter; attractive clothing instead of mere covering to keep warm; appetizing food instead of anything that suffices to appease hunger. It provides the freedom from toil without which there can be no art, music, literature, or learning. There is no need to belabor the point. What lifted man – one of the weaker mammals – above the animal world was that he could devise, with his brain, ways to increase the energy at his disposal, and use the leisure so gained to cultivate his mind and spirit. Where man must rely solely on the energy of his own body, he can sustain only the most meager existence.

Man’s first step on the ladder of civilization dates from his discovery of fire and his domestication of animals. With these energy resources he was able to build a pastoral culture. To move upward to an agricultural civilization he needed more energy. In the past this was found in the labor of dependent members of large patriarchal families, augmented by slaves obtained through purchase or as war booty. There are some backward communities which to this day depend on this type of energy.

Slave labor was necessary for the city-states and the empires of antiquity; they frequently had slave populations larger than their free citizenry. As long as slaves were abundant and no moral censure attached to their ownership, incentives to search for alternative sources of energy were lacking; this may well have been the single most important reason why engineering advanced very little in ancient times.

A reduction of per capita energy consumption has always in the past led to a decline in civilization and a reversion to a more primitive way of life. For example, exhaustion of wood fuel is believed to have been the primary reason for the fall of the Mayan Civilization on this continent and of the decline of once flourishing civilizations in Asia. India and China once had large forests, as did much of the Middle East. Deforestation not only lessened the energy base but had a further disastrous effect: lacking plant cover, soil washed away, and with soil erosion the nutritional base was reduced as well.

Another cause of declining civilization comes with pressure of population on available land. A point is reached where the land can no longer support both the people and their domestic animals. Horses and mules disappear first. Finally even the versatile water buffalo is displaced by man who is two and one half times as efficient an energy converter as are draft animals. It must always be remembered that while domestic animals and agricultural machines increase productivity per man, maximum productivity per acre is achieved only by intensive manual cultivation.

It is a sobering thought that the impoverished people of Asia, who today seldom go to sleep with their hunger completely satisfied, were once far more civilized and lived much better than the people of the West. And not so very long ago, either. It was the stories brought back by Marco Polo of the marvelous civilization in China which turned Europe’s eyes to the riches of the East, and induced adventurous sailors to brave the high seas in their small vessels searching for a direct route to the fabulous Orient. The “wealth of the Indies” is a phrase still used, but whatever wealth may be there it certainly is not evident in the life of the people today.

Asia failed to keep technological pace with the needs of her growing populations and sank into such poverty that in many places man has become again the primary source of energy, since other energy converters have become too expensive. This must be obvious to the most casual observer. What this means is quite simply a reversion to a more primitive stage of civilization with all that it implies for human dignity and happiness.

Anyone who has watched a sweating Chinese farm worker strain at his heavily laden wheelbarrow, creaking along a cobblestone road, or who has flinched as he drives past an endless procession of human beasts of burden moving to market in Java – the slender women bent under mountainous loads heaped on their heads – anyone who has seen statistics translated into flesh and bone, realizes the degradation of man’s stature when his muscle power becomes the only energy source he can afford. Civilization must wither when human beings are so degraded.

Where slavery represented a major source of energy, its abolition had the immediate effect of reducing energy consumption. Thus when this time-honored institution came under moral censure by Christianity, civilization declined until other sources of energy could be found. Slavery is incompatible with Christian belief in the worth of the humblest individual as a child of God. As Christianity spread through the Roman Empire and masters freed their slaves – in obedience to the teaching of the Church – the energy base of Roman civilization crumbled. This, some historians believe, may have been a major factor in the decline of Rome and the temporary reversion to a more primitive way of life during the Dark Ages. Slavery gradually disappeared throughout the Western world, except in its milder form of serfdom. That it was revived a thousand years later merely shows man’s ability to stifle his conscience – at least for a while – when his economic needs are great. Eventually, even the needs of overseas plantation economies did not suffice to keep alive a practice so deeply repugnant to Western man’s deepest convictions.

It may well be that it was unwillingness to depend on slave labor for their energy needs which turned the minds of medieval Europeans to search for alternate sources of energy, thus sparking the Power Revolution of the Middle Ages which, in turn, paved the way for the Industrial Revolution of the 19th Century. When slavery disappeared in the West, engineering advanced. Men began to harness the power of nature by utilizing water and wind as energy sources. The sailing ship, in particular, which replaced the slave-driven galley of antiquity, was vastly improved by medieval shipbuilders and became the first machine enabling man to control large amounts of inanimate energy.

The next important high-energy converter used by Europeans was gunpowder – an energy source far superior to the muscular strength of the strongest bowman or lancer. With ships that could navigate the high seas and arms that could out-fire any hand weapon, Europe was now powerful enough to preempt for herself the vast empty areas of the Western Hemisphere into which she poured her surplus populations to build new nations of European stock. With these ships and arms she also gained political control over populous areas in Africa and Asia from which she drew the raw materials needed to speed her industrialization, thus complementing her naval and military dominance with economic and commercial supremacy.

When a low-energy society comes in contact with a high-energy society, the advantage always lies with the latter. The Europeans not only achieved standards of living vastly higher than those of the rest of the world, but they did this while their population was growing at rates far surpassing those of other peoples. In fact, they doubled their share of total world population in the short span of three centuries. From one sixth in 1650, the people of European stock increased to almost one third of total world population by 1950.

Meanwhile much of the rest of the world did not even keep energy sources in balance with population growth. Per capita energy consumption actually diminished in large areas. It is this difference in energy consumption which has resulted in an ever-widening gap between the one-third minority who live in high-energy countries and the two-thirds majority who live in low-energy areas.

These so-called underdeveloped countries are now finding it far more difficult to catch up with the fortunate minority than it was for Europe to initiate transition from low-energy to high-energy consumption. For one thing, their ratio of land to people is much less favorable; for another, they have no outlet for surplus populations to ease the transition since all the empty spaces have already been taken over by people of European stock.

Almost all of today’s low-energy countries have a population density so great that it perpetuates dependence on intensive manual agriculture which alone can yield barely enough food for their people. They do not have enough acreage, per capita, to justify using domestic animals or farm machinery, although better seeds, better soil management, and better hand tools could bring some improvement. A very large part of their working population must nevertheless remain on the land, and this limits the amount of surplus energy that can be produced. Most of these countries must choose between using this small energy surplus to raise their very low standard of living or postpone present rewards for the sake of future gain by investing the surplus in new industries. The choice is difficult because there is no guarantee that today’s denial may not prove to have been in vain. This is so because of the rapidity with which public health measures have reduced mortality rates, resulting in population growth as high or even higher than that of the high-energy nations. Theirs is a bitter choice; it accounts for much of their anti-Western feeling and may well portend a prolonged period of world instability.

How closely energy consumption is related to standards of living may be illustrated by the example of India. Despite intelligent and sustained efforts made since independence, India’s per capita income is still only 20 cents daily; her infant mortality is four times ours; and the life expectance of her people is less than one half that of the industrialized countries of the West. These are ultimate consequences of India’s very low energy consumption: one-fourteenth of world average; one-eightieth of ours.

Ominous, too, is the fact that while world food production increased 9% in the six years from 1945-51, world population increased by 12%. Not only is world population increasing faster than world food production, but unfortunately, increases in food production tend to occur in the already well-fed, high-energy countries rather than in the undernourished, low-energy countries where food is most lacking.

I think no further elaboration is needed to demonstrate the significance of energy resources for our own future.

Our civilization rests upon a technological base which requires enormous quantities of fossil fuels. What assurance do we then have that our energy needs will continue to be supplied by fossil fuels: The answer is – in the long run – none.

The earth is finite. Fossil fuels are not renewable. In this respect our energy base differs from that of all earlier civilizations. They could have maintained their energy supply by careful cultivation. We cannot. Fuel that has been burned is gone forever. Fuel is even more evanescent than metals. Metals, too, are non-renewable resources threatened with ultimate extinction, but something can be salvaged from scrap. Fuel leaves no scrap and there is nothing man can do to rebuild exhausted fossil fuel reserves. They were created by solar energy 500 million years ago and took eons to grow to their present volume.

In the face of the basic fact that fossil fuel reserves are finite, the exact length of time these reserves will last is important in only one respect: the longer they last, the more time do we have, to invent ways of living off renewable or substitute energy sources and to adjust our economy to the vast changes which we can expect from such a shift.

Fossil fuels resemble capital in the bank. A prudent and responsible parent will use his capital sparingly in order to pass on to his children as much as possible of his inheritance. A selfish and irresponsible parent will squander it in riotous living and care not one whit how his offspring will fare.

Engineers whose work familiarizes them with energy statistics; far-seeing industrialists who know that energy is the principal factor which must enter into all planning for the future; responsible governments who realize that the well-being of their citizens and the political power of their countries depend on adequate energy supplies – all these have begun to be concerned about energy resources. In this country, especially, many studies have been made in the last few years, seeking to discover accurate information on fossil-fuel reserves and foreseeable fuel needs.

Statistics involving the human factor are, of course, never exact. The size of usable reserves depends on the ability of engineers to improve the efficiency of fuel extraction and use. It also depends on discovery of new methods to obtain energy from inferior resources at costs which can be borne without unduly depressing the standard of living. Estimates of future needs, in turn, rely heavily on population figures which must always allow for a large element of uncertainty, particularly as man reaches a point where he is more and more able to control his own way of life.

Current estimates of fossil fuel reserves vary to an astonishing degree. In part this is because the results differ greatly if cost of extraction is disregarded or if in calculating how long reserves will last, population growth is not taken into consideration; or, equally important, not enough weight is given to increased fuel consumption required to process inferior or substitute metals. We are rapidly approaching the time when exhaustion of better grade metals will force us to turn to poorer grades requiring in most cases greater expenditure of energy per unit of metal.

But the most significant distinction between optimistic and pessimistic fuel reserve statistics is that the optimists generally speak of the immediate future – the next twenty-five years or so – while the pessimists think in terms of a century from now. A century or even two is a short span in the history of a great people. It seems sensible to me to take a long view, even if this involves facing unpleasant facts.

For it is an unpleasant fact that according to our best estimates, total fossil fuel reserves recoverable at not over twice today’s unit cost, are likely to run out at some time between the years 2000 and 2050, if present standards of living and population growth rates are taken into account. Oil and natural gas will disappear first, coal last. There will be coal left in the earth, of course. But it will be so difficult to mine that energy costs would rise to economically intolerable heights, so that it would then become necessary either to discover new energy sources or to lower standards of living drastically
.

For more than one hundred years we have stoked ever growing numbers of machines with coal; for fifty years we have pumped gas and oil into our factories, cars, trucks, tractors, ships, planes, and homes without giving a thought to the future. Occasionally the voice of a Cassandra has been raised only to be quickly silenced when a lucky discovery revised estimates of our oil reserves upward, or a new coalfield was found in some remote spot. Fewer such lucky discoveries can be expected in the future, especially in industrialized countries where extensive mapping of resources has been done. Yet the popularizes of scientific news would have us believe that there is no cause for anxiety, that reserves will last thousands of years, and that before they run out science will have produced miracles. Our past history and security have given us the sentimental belief that the things we fear will never really happen – that everything turns out right in the end. But, prudent men will reject these tranquilizers and prefer to face the facts so that they can plan intelligently for the needs of their posterity.

Looking into the future, from the mid-20th Century, we cannot feel overly confident that present high standards of living will of a certainty continue through the next century and beyond. Fossil fuel costs will soon definitely begin to rise as the best and most accessible reserves are exhausted, and more effort will be required to obtain the same energy from remaining reserves. It is likely also that liquid fuel synthesized from coal will be more expensive. Can we feel certain that when economically recoverable fossil fuels are gone science will have learned how to maintain a high standard of living on renewable energy sources?

I believe it would be wise to assume that the principal renewable fuel sources which we can expect to tap before fossil reserves run out will supply only 7 to 15% of future energy needs. The five most important of these renewable sources are wood fuel, farm wastes, wind, water power, and solar heat.

Wood fuel and farm wastes are dubious as substitutes because of growing food requirements to be anticipated. Land is more likely to be used for food production than for tree crops; farm wastes may be more urgently needed to fertilize the soil than to fuel machines.

Wind and water power can furnish only a very small percentage of our energy needs. Moreover, as with solar energy, expensive structures would be required, making use of land and metals which will also be in short supply. Nor would anything we know today justify putting too much reliance on solar energy though it will probably prove feasible for home heating in favorable localities and for cooking in hot countries which lack wood, such as India.

More promising is the outlook for nuclear fuels. These are not, properly speaking, renewable energy sources, at least not in the present state of technology, but their capacity to “breed” and the very high energy output from small quantities of fissionable material, as well as the fact that such materials are relatively abundant, do seem to put nuclear fuels into a separate category from exhaustible fossil fuels. The disposal of radioactive wastes from nuclear power plants is, however, a problem which must be solved before there can be any widespread use of nuclear power.

Another limit in the use of nuclear power is that we do not know today how to employ it otherwise than in large units to produce electricity or to supply heating. Because of its inherent characteristics, nuclear fuel cannot be used directly in small machines, such as cars, trucks, or tractors. It is doubtful that it could in the foreseeable future furnish economical fuel for civilian airplanes or ships, except very large ones. Rather than nuclear locomotives, it might prove advantageous to move trains by electricity produced in nuclear central stations. We are only at the beginning of nuclear technology, so it is difficult to predict what we may expect.

Transportation – the lifeblood of all technically advanced civilizations – seems to be assured, once we have borne the initial high cost of electrifying railroads and replacing buses with streetcars or interurban electric trains. But, unless science can perform the miracle of synthesizing automobile fuel from some energy source as yet unknown or unless trolley wires power electric automobiles on all streets and highways, it will be wise to face up to the possibility of the ultimate disappearance of automobiles, trucks, buses, and tractors. Before all the oil is gone and hydrogenation of coal for synthetic liquid fuels has come to an end, the cost of automotive fuel may have risen to a point where private cars will be too expensive to run and public transportation again becomes a profitable business.

Today the automobile is the most uneconomical user of energy. Its efficiency is 5% compared with 23% for the Diesel-electric railway. It is the most ravenous devourer of fossil fuels, accounting for over half of the total oil consumption in this country. And the oil we use in the United States in one year took nature about 14 million years to create. Curiously, the automobile, which is the greatest single cause of the rapid exhaustion of oil reserves, may eventually be the first fuel consumer to suffer. Reduction in automotive use would necessitate an extraordinarily costly reorganization of the pattern of living in industrialized nations, particularly in the United States. It would seem prudent to bear this in mind in future planning of cities and industrial locations.

Our present known reserves of fissionable materials are many times as large as our net economically recoverable reserves of coal. A point will be reached before this century is over when fossil fuel costs will have risen high enough to make nuclear fuels economically competitive. Before that time comes we shall have to make great efforts to raise our entire body of engineering and scientific knowledge to a higher plateau. We must also induce many more young Americans to become metallurgical and nuclear engineers. Else we shall not have the knowledge or the people to build and run the nuclear power plants which ultimately may have to furnish the major part of our energy needs.

If we start to plan now, we may be able to achieve the requisite level of scientific and engineering knowledge before our fossil fuel reserves give out, but the margin of safety is not large. This is also based on the assumption that atomic war can be avoided and that population growth will not exceed that now calculated by demographic experts.

War, of course, cancels all man’s expectations. Even growing world tension just short of war could have far-reaching effects. In this country it might, on the one hand, lead to greater conservation of domestic fuels, to increased oil imports, and to an acceleration in scientific research which might turn up unexpected new energy sources. On the other hand, the resulting armaments race would deplete metal reserves more rapidly, hastening the day when inferior metals must be utilized with consequent greater expenditure of energy. Underdeveloped nations with fossil fuel deposits might be coerced into withholding them from the free world or may themselves decide to retain them for their own future use. The effect on Europe, which depends on coal and oil imports, would be disastrous and we would have to share our own supplies or lose our allies.

Barring atomic war or unexpected changes in the population curve, we can count on an increase in world population from two and one half billion today to four billion in the year 2000; six to eight billion by 2050. The United States is expected to quadruple its population during the 20th Century � from 75 million in 1900 to 300 million in 2000 – and to reach at least 375 million in 2050. This would almost exactly equal India’s present population which she supports on just a little under half of our land area.

It is an awesome thing to contemplate a graph of world population growth from prehistoric times – tens of thousands of years ago – to the day after tomorrow – let us say the year 2000 A.D. If we visualize the population curve as a road which starts at sea level and rises in proportion as world population increases, we should see it stretching endlessly, almost level, for 99% of the time that man has inhabited the earth. In 6000 B.C., when recorded history begins, the road is running at a height of about 70 feet above sea level, which corresponds to a population of 10 million. Seven thousand years later – in 1000 A.D. – the road has reached an elevation of 1,600 feet; the gradation now becomes steeper, and 600 years later the road is 2,900 feet high. During the short span of the next 400 years � from 1600 to 2000 – it suddenly turns sharply upward at an almost perpendicular inclination and goes straight up to an elevation of 29,000 feet – the height of Mt. Everest, the world’s tallest mountain.

In the 8,000 years from the beginning of history to the year 2000 A.D. world population will have grown from 10 million to 4 billion, with 90% of that growth taking place during the last 5% of that period, in 400 years. It took the first 3,000 years of recorded history to accomplish the first doubling of population, 100 years for the last doubling, but the next doubling will require only 50 years. Calculations give us the astonishing estimate that one out of every 20 human beings born into this world is alive today.

The rapidity of population growth has not given us enough time to readjust our thinking. Not much more than a century ago, our country, the very spot on which I now stand was a wilderness in which a pioneer could find complete freedom from men and from government. If things became too crowded – if he saw his neighbor’s chimney smoke – he could, and often did, pack up and move west. We began life in 1776 as a nation of less than four million people – spread over a vast continent – with seemingly inexhaustible riches of nature all about. We conserved what was scarce – human labor – and squandered what seemed abundant – natural resources – and we are still doing the same today.

Much of the wilderness which nurtured what is most dynamic in the American character has now been buried under cities, factories and suburban developments where each picture window looks out on nothing more inspiring than the neighbor’s back yard with the smoke of his fire in the wire basket clearly visible.

Life in crowded communities cannot be the same as life on the frontier. We are no longer free, as was the pioneer – to work for our own immediate needs regardless of the future. We are no longer as independent of men and of government as were Americans two or three generations ago. An ever larger share of what we earn must go to solve problems caused by crowded living – bigger governments; bigger city, state, and federal budgets to pay for more public services. Merely to supply us with enough water and to carry away our waste products becomes more difficult and expansive daily. More laws and law enforcement agencies are needed to regulate human relations in urban industrial communities and on crowded highways than in the America of Thomas Jefferson.

Certainly no one likes taxes, but we must become reconciled to larger taxes in the larger America of tomorrow.

I suggest that this is a good time to think soberly about our responsibilities to our descendents – those who will ring out the Fossil Fuel Age. Our greatest responsibility, as parents and as citizens, is to give America’s youngsters the best possible education. We need the best teachers and enough of them to prepare our young people for a future immeasurably more complex than the present, and calling for ever larger numbers of competent and highly trained men and women. This means that we must not delay building more schools, colleges, and playgrounds. It means that we must reconcile ourselves to continuing higher taxes to build up and maintain at decent salaries a greatly enlarged corps of much better trained teachers, even at the cost of denying ourselves such momentary pleasures as buying a bigger new car, or a TV set, or household gadget. We should find – I believe – that these small self-denials would be far more than offset by the benefits they would buy for tomorrow’s America. We might even – if we wanted – give a break to these youngsters by cutting fuel and metal consumption a little here and there so as to provide a safer margin for the necessary adjustments which eventually must be made in a world without fossil fuels.

One final thought I should like to leave with you. High-energy consumption has always been a prerequisite of political power. The tendency is for political power to be concentrated in an ever-smaller number of countries. Ultimately, the nation which control – the largest energy resources will become dominant. If we give thought to the problem of energy resources, if we act wisely and in time to conserve what we have and prepare well for necessary future changes, we shall insure this dominant position for our own country.